## **Preliminary communication**

## Novel thermal rearrangements of type Si-C-O-N→N-C-O-Si in 1-[bis(trifluoromethyl)aminoxyl]alkyl-trichlorosilanes and -trimethylsilanes

R.N. HASZELDINE, D.J. ROGERS and A.E. TIPPING

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

(Received March 16th, 1973)

## SUMMARY

The silanes Me<sub>2</sub> SiRCHON(CF<sub>3</sub>)<sub>2</sub> (R = Me or ON(CF<sub>3</sub>)<sub>2</sub>) and  $\stackrel{1}{CH_2}ON(CF_3)_2$ Cl<sub>3</sub>SiCMe<sub>2</sub>ON(CF<sub>3</sub>)<sub>2</sub> rearrange thermally in the range 50–150° to afford near-quantitative yields of the compounds (CF<sub>3</sub>)<sub>2</sub> NCHOSiMe<sub>2</sub> R and (CF<sub>3</sub>)<sub>2</sub> NCMe<sub>2</sub>OSiCl<sub>3</sub>, respectively.  $\stackrel{1}{CH_2}ON(CF_3)_2$ 

Thermal isomerisations involving insertion of oxygen into an Si–C bond are not common; examples are restricted to the rearrangement of  $\beta$ -silyl ketones<sup>1</sup>:

 $R_3SiCH_2COR' \xrightarrow{80-175^{\circ}} R_3SiOCR'=CH_2$ 

A related but more complex thermal rearrangement involving oxygen insertion into an Si-N bond occurs with tris-organosilylhydroxylamines<sup>2</sup>:

 $(R_3Si)_2NOSiR_3 \xrightarrow{200^\circ} R_3SiNRSiR_2OSiR_3$ 

During the course of an investigation into the reactions of the bis(trifluoromethyl)aminoxy radical,  $(CF_3)_2 NO^{*3}$ , with vinylsilanes and alkylsilanes, certain of the products isomerised during GLC separation (50–100°). Those which rearranged contained a bis(trifluoromethyl)aminoxyl group on the  $\alpha$ -carbon to silicon, and study of additional compounds showed that the rearrangement was of the type



The trimethylsilyl compound (I) when heated *in vacuo* at 50° (12h) gave the rearranged silane (III) (100%). The product was shown not to have the alternative structure (IV) (which would be formed by direct interchange<sup>4</sup> of a methyl group on silicon for the  $(CF_3)_2$  NO group on the  $\alpha$ -carbon) by the presence in the <sup>19</sup> F NMR spectrum of the product of two absorption bands of equal intensity at -22.0 and -8.0 ppm relative to external  $CF_3CO_2$  H, in the regions expected for  $(CF_3)_2$  NO-C and  $(CF_3)_2$  NO-C groups, respectively.



The progress of the reactions at 60 and 80° were determined at various intervals of time by NMR analysis. Plots of time t against  $\log_{10}$  (initial concentration of (I)/ concentration of (I) after time t) gave straight lines (first-order reactions) from the gradients of which the rate constants were calculated to be ca.  $9 \cdot 10^{-5}$  and ca.  $6.5 \cdot 10^{-4}$  s<sup>-1</sup>, respectively; the activation energy for the rearrangement is thus ca. 95 kJ·mol<sup>-1</sup>.

The silane (II) underwent a corresponding rearrangement when heated at  $150^{\circ}$  (1h) to give the silane (V) (100%), but the silane Me<sub>3</sub>SiCH<sub>2</sub>ON(CF<sub>3</sub>)<sub>2</sub> did not.

 $(CF_3)_2 \operatorname{NOSiMe}_2 \operatorname{CHON}(CF_3)_2 \rightarrow (CF_3)_2 \operatorname{NCHOSiMe}_2 \operatorname{ON}(CF_3)_2$   $CH_2 \operatorname{ON}(CF_3)_2 \qquad CH_2 \operatorname{ON}(CF_3)_2$ (II)
(V)

Of the trichlorosilyl compounds studied  $Cl_3SiCH[ON(CF_3)_2CH_2ON(CF_3)_2$  was stable at 200°, compound  $Cl_3SiCHMeON(CF_3)_2$  did not isomerise below 150°, and compound  $Cl_3SiCMe_2ON(CF_3)_2$  rearranged readily at 100° (2h) to afford isomer  $(CF_3)_2NCMe_2OSiCl_3$  (98%).

The case of the rearrangement, which involves cleavage of relatively weak N–O and C–Si and formation of stronger Si–O and C–N, is  $X_3$ SiCRR'ON(CF<sub>3</sub>)<sub>2</sub> >  $X_3$ SiCHRON(CF<sub>3</sub>)<sub>2</sub> >  $X_3$ SiCHRON(CF<sub>3</sub>)<sub>3</sub> >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$  >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$  >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$  >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$  >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$ SiCHRON(CF<sub>3</sub>) >  $X_3$  >  $X_3$ SiCHR

which contain the groups Me<sub>3</sub>Si or  $(CF_3)_2$  NOSiMe<sub>2</sub> rearranged when the  $\alpha$ -methylene group was mono-substituted, but silanes containing the less bulky SiCl<sub>3</sub> group only underwent rearrangement when the  $\alpha$ -methylene group was disubstituted.

All compounds gave satisfactory spectral and elemental analyses.

## REFERENCES

- 1 A.G. Brook, D.M. MacRae and W.W. Limburg, J. Amer. Chem. Soc., 89 (1967) 5493.
- 2 P. Boudjouk and R. West, J. Amer. Chem. Soc., 93 (1971) 5901.
- 3 W.D. Blackley and R.R. Reinhard, J. Amer. Chem. Soc., 87 (1965) 802; S.P. Makarov,
- A.Ya. Yakubovich, S.S. Dubov and A.N. Medvedev, Doklady Akad. Nauk S.S.S.R., 160 (1965) 1319.
  A.G. Brook and P.F. Jones, Chem. Commun., (1969) 1324; W.I. Bevan, R.N. Haszeldine, J. Middleton and A.E. Tipping, J, Organometal. Chem., 23 (1970) C17.